Never Minimal Automata and the Rainbow Bipartite Subgraph Problem

نویسندگان

  • Emanuele Rodaro
  • Pedro V. Silva
چکیده

Never minimal automata, introduced in [4], are strongly connected automata which are not minimal for any choice of their final states. In [4] the authors raise the question whether recognizing such automata is a polynomial time task or not. In this paper, we show that the complement of this problem is equivalent to the problem of checking whether or not in an edge-colored graph there is a bipartite subgraph whose edges are colored using all the colors. We prove that this graph theoretic problem is NP-complete, showing that checking the property of never-minimality is unlikely a polynomial time task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the minimum rainbow subgraph number of a graph

We consider the MINIMUM RAINBOW SUBGRAPH problem (MRS): Given a graph G whose edges are coloured with p colours. Find a subgraph F ⊆ G of minimum order and with p edges such that each colour occurs exactly once. This problem is NP-hard and APX-hard. For a given graph G and an edge colouring c with p colours we define the rainbow subgraph number rs(G, c) to be the order of a minimum rainbow subg...

متن کامل

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

O ct 2 00 6 Bipartite rainbow numbers of matchings ∗

Given two graphs G and H, let f(G,H) denote the maximum number c for which there is a way to color the edges of G with c colors such that every subgraph H of G has at least two edges of the same color. Equivalently, any edge-coloring of G with at least rb(G,H) = f(G,H) + 1 colors contains a rainbow copy of H, where a rainbow subgraph of an edge-colored graph is such that no two edges of it have...

متن کامل

Bipartite decomposition of random graphs

Definition (Maximal size complete bipartite induced subgraph). β(G) := size of maximal complete bipartite induced subgraph of G. Definition (Minimal bipartite decomposion number). τ(G) := minimal number of complete edge disjoint covering bipartite subgraphs of G. Definition (Minimal nontrivial bipartite decomposion number). τ (G) := minimal number of complete edge disjoint covering nontrivial (...

متن کامل

Rainbow regular order of graphs

Assume that the vertex set of the complete graph Kt is Zt if t is odd and Zt−1 ∪ {∞} otherwise, with convention that x +∞ = 2x. If the color of any edge xy is defined to be x+ y then GKt stands for Kt together with the resulting edge coloring. Hence color classes are maximum matchings rotationally/cyclically generated if t is even/odd. A rainbow subgraph of GKt has all edges with distinct color...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011